Tracing#
This page presents all APIs and classes related to tracing in PyAgentSpec.
Trace#
- class pyagentspec.tracing.trace.Trace(name=None, id=None, span_processors=None, shutdown_on_exit=True, root_span=None)#
Bases:
objectThe root of a collection of Spans.
It is used to group together all the spans and events emitted during the execution of an assistant.
- Parameters:
name (str | None) –
id (str | None) –
span_processors (List[SpanProcessor] | None) –
shutdown_on_exit (bool) –
root_span (Span | None) –
- is_async_mode_active()#
- Return type:
bool
SpanProcessor#
- class pyagentspec.tracing.spanprocessor.SpanProcessor(mask_sensitive_information=True)#
Bases:
ABCInterface which allows hooks for Span start and end method invocations.
Aligned with OpenTelemetry APIs.
- Parameters:
mask_sensitive_information (bool) –
- abstract on_end(span)#
Called when a Span is ended.
- Parameters:
span (Span) – The spans that ends
- Return type:
None
- abstract async on_end_async(span)#
Called when a Span is ended. Asynchronous method.
- Parameters:
span (Span) – The spans that ends
- Return type:
None
- abstract on_event(event, span)#
Called when an Event is triggered.
- abstract async on_event_async(event, span)#
Called when an Event is triggered. Asynchronous method.
- abstract on_start(span)#
Called when a Span is started.
- Parameters:
span (Span) – The spans that starts
- Return type:
None
- abstract async on_start_async(span)#
Called when a Span is started. Asynchronous method.
- Parameters:
span (Span) – The spans that starts
- Return type:
None
- abstract shutdown()#
Called when a Trace is shutdown.
- Return type:
None
- abstract async shutdown_async()#
Called when a Trace is shutdown. Asynchronous method.
- Return type:
None
- abstract startup()#
Called when a Trace is started.
- Return type:
None
- abstract async startup_async()#
Called when a Trace is started. Asynchronous method.
- Return type:
None
Spans#
- class pyagentspec.tracing.spans.span.Span(*, id=<factory>, name=None, description='', start_time=None, end_time=None, events=<factory>, metadata=<factory>)#
Bases:
BaseModelWithSensitiveInfo- Parameters:
id (str) –
name (str | None) –
description (str) –
start_time (int | None) –
end_time (int | None) –
events (List[Event]) –
metadata (dict[str, Any]) –
- add_event(event)#
Add an event to the span and trigger
on_eventon the activeSpanProcessors.- Parameters:
event (Event) –
- Return type:
None
- async add_event_async(event)#
Add an event to the span and trigger
on_event_asyncon the activeSpanProcessors.- Parameters:
event (Event) –
- Return type:
None
- description: str#
The description of the span.
- end()#
End the span.
This includes calling the
on_endmethod of the active SpanProcessors.- Return type:
None
- async end_async()#
End the span. Asynchronous method.
This includes calling the
on_end_asyncmethod of the active SpanProcessors.- Return type:
None
- end_time: int | None#
The timestamp of when the span was closed
- metadata: dict[str, Any]#
Metadata related to the span
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_post_init(_Span__context)#
Set the default name if it is not provided.
- Parameters:
_Span__context (Any) –
- Return type:
None
- start()#
Start the span.
This includes calling the
on_startmethod of the active SpanProcessors.- Return type:
None
- async start_async()#
Start the span. Asynchronous method.
This includes calling the
on_start_asyncmethod of the active SpanProcessors.- Return type:
None
- start_time: int | None#
The timestamp of when the span was started
- class pyagentspec.tracing.spans.root.RootSpan(*, id=<factory>, name=None, description='', start_time=None, end_time=None, events=<factory>, metadata=<factory>)#
Bases:
SpanSpan that covers a whole Trace.
Starts when: a Trace is started
Ends when: a Trace is closed
- Parameters:
id (str) –
name (str | None) –
description (str) –
start_time (int | None) –
end_time (int | None) –
events (List[Event]) –
metadata (dict[str, Any]) –
- description: str#
The description of the span.
- end_time: int | None#
The timestamp of when the span was closed
- metadata: dict[str, Any]#
Metadata related to the span
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_post_init(_Span__context)#
Set the default name if it is not provided.
- Parameters:
_Span__context (Any) –
- Return type:
None
- start_time: int | None#
The timestamp of when the span was started
- class pyagentspec.tracing.spans.agent.AgentExecutionSpan(*, id=<factory>, name=None, description='', start_time=None, end_time=None, events=<factory>, metadata=<factory>, agent)#
Bases:
SpanSpan to represent the execution of an agent. Can be nested when executing sub-agents.
Starts when: agent execution starts
Ends when: the agent execution is completed, and the result is ready to be processed
- Parameters:
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_post_init(_Span__context)#
Set the default name if it is not provided.
- Parameters:
_Span__context (Any) –
- Return type:
None
- class pyagentspec.tracing.spans.flow.FlowExecutionSpan(*, id=<factory>, name=None, description='', start_time=None, end_time=None, events=<factory>, metadata=<factory>, flow)#
Bases:
SpanSpan that covers the execution of a Flow.
Starts when: the StartNode execution of this flow starts
Ends when: one of the EndNode execution finishes
- Parameters:
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_post_init(_Span__context)#
Set the default name if it is not provided.
- Parameters:
_Span__context (Any) –
- Return type:
None
- class pyagentspec.tracing.spans.node.NodeExecutionSpan(*, id=<factory>, name=None, description='', start_time=None, end_time=None, events=<factory>, metadata=<factory>, node)#
Bases:
SpanSpan that covers the execution of a Node.
Starts when: the node execution starts on the given inputs
Ends when: the node execution ends and outputs are ready to be processed
- Parameters:
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_post_init(_Span__context)#
Set the default name if it is not provided.
- Parameters:
_Span__context (Any) –
- Return type:
None
- class pyagentspec.tracing.spans.tool.ToolExecutionSpan(*, id=<factory>, name=None, description='', start_time=None, end_time=None, events=<factory>, metadata=<factory>, tool)#
Bases:
SpanSpan that covers a tool execution. This does not include client tools.
Starts when: tool execution starts
Ends when: the tool execution is completed and the result is ready to be processed
- Parameters:
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_post_init(_Span__context)#
Set the default name if it is not provided.
- Parameters:
_Span__context (Any) –
- Return type:
None
- class pyagentspec.tracing.spans.llm.LlmGenerationSpan(*, id=<factory>, name=None, description='', start_time=None, end_time=None, events=<factory>, metadata=<factory>, llm_config)#
Bases:
SpanSpan that covers the whole LLM generation process
Starts when: the LLM generation request is received and the LLM call is performed
Ends when: the LLM output was generated, and it’s ready to be processed
- Parameters:
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_post_init(_Span__context)#
Set the default name if it is not provided.
- Parameters:
_Span__context (Any) –
- Return type:
None
- class pyagentspec.tracing.spans.managerworkers.ManagerWorkersExecutionSpan(*, id=<factory>, name=None, description='', start_time=None, end_time=None, events=<factory>, metadata=<factory>, managerworkers)#
Bases:
SpanSpan to represent the execution of a ManagerWorkers. Can be nested when executing sub-agents.
Starts when: manager-workers pattern execution starts
Ends when: the manager-workers execution is completed and the result is ready to be processed
- Parameters:
id (str) –
name (str | None) –
description (str) –
start_time (int | None) –
end_time (int | None) –
events (List[Event]) –
metadata (dict[str, Any]) –
managerworkers (ManagerWorkers) –
- managerworkers: ManagerWorkers#
The ManagerWorkers being executed
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_post_init(_Span__context)#
Set the default name if it is not provided.
- Parameters:
_Span__context (Any) –
- Return type:
None
- class pyagentspec.tracing.spans.swarm.SwarmExecutionSpan(*, id=<factory>, name=None, description='', start_time=None, end_time=None, events=<factory>, metadata=<factory>, swarm)#
Bases:
SpanSpan to represent the execution of a Swarm. Can be nested when executing sub-agents.
Starts when: swarm pattern execution starts
Ends when: the swarm execution is completed and the result is ready to be processed
- Parameters:
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_post_init(_Span__context)#
Set the default name if it is not provided.
- Parameters:
_Span__context (Any) –
- Return type:
None
Events#
- class pyagentspec.tracing.events.event.Event(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>)#
Bases:
BaseModelWithSensitiveInfo- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
- description: str#
The description of the event.
- metadata: dict[str, Any]#
Metadata related to the event
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_post_init(_Event__context)#
Set the default name if it is not provided.
- Parameters:
_Event__context (Any) –
- Return type:
None
- timestamp: int#
The timestamp of when the event occurred
Agent Events#
- class pyagentspec.tracing.events.agent.AgentExecutionStart(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, agent, inputs)#
Bases:
EventThe execution of an agent is starting. Emitted when an AgentExecutionSpan starts.
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
agent (Agent) –
inputs (Dict[str, Any]) –
- inputs: Dict[str, Any]#
The inputs used for the agent’s execution, one per property defined in agent’s inputs
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class pyagentspec.tracing.events.agent.AgentExecutionEnd(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, agent, outputs)#
Bases:
EventThe execution of an agent is ending. Emitted when an AgentExecutionSpan ends.
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
agent (Agent) –
outputs (Dict[str, Any]) –
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- outputs: Dict[str, Any]#
The outputs generated by the agent’s execution, one per property defined in agent’s outputs
Flow Events#
- class pyagentspec.tracing.events.flow.FlowExecutionStart(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, flow, inputs)#
Bases:
EventThe execution of a flow is starting. Emitted when a FlowExecutionSpan starts.
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
flow (Flow) –
inputs (Dict[str, Any]) –
- inputs: Dict[str, Any]#
The inputs used for the flow’s execution, one per property defined in flow’s inputs
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class pyagentspec.tracing.events.flow.FlowExecutionEnd(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, flow, outputs, branch_selected)#
Bases:
EventThe execution of a flow is ending. Emitted at a FlowExecutionSpan ends.
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
flow (Flow) –
outputs (Dict[str, Any]) –
branch_selected (str) –
- branch_selected: str#
The exit branch selected at the end of the Flow’s execution
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- outputs: Dict[str, Any]#
The outputs generated by the flow’s execution, one per property defined in flow’s outputs
- class pyagentspec.tracing.events.node.NodeExecutionStart(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, node, inputs)#
Bases:
EventThe execution of a node is starting. Emitted ad a NodeExecutionSpan starts.
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
node (Node) –
inputs (Dict[str, Any]) –
- inputs: Dict[str, Any]#
The inputs used for the node’s execution, one per property defined in node’s inputs
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class pyagentspec.tracing.events.node.NodeExecutionEnd(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, node, outputs, branch_selected)#
Bases:
EventThe execution of a node is ending. Emitted at a NodeExecutionSpan ends.
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
node (Node) –
outputs (Dict[str, Any]) –
branch_selected (str) –
- branch_selected: str#
The exit branch selected at the end of the Node’s execution
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- outputs: Dict[str, Any]#
The outputs generated by the node’s execution, one per property defined in node’s outputs
Tool Events#
- class pyagentspec.tracing.events.tool.ToolExecutionRequest(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, tool, inputs, request_id)#
Bases:
EventA tool execution request is received. Emitted when a ToolExecutionSpan starts, or a client tool is called.
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
tool (Tool) –
inputs (Dict[str, Any]) –
request_id (str) –
- inputs: Dict[str, Any]#
The input values that should be used to execute the tool, one per property defined in tool’s inputs
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- request_id: str#
Identifier of the tool execution request
- class pyagentspec.tracing.events.tool.ToolExecutionResponse(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, tool, outputs, request_id)#
Bases:
EventA tool execution finishes and a result is received. Raised when a ToolExecutionSpan ends, or a client tool result is received.
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
tool (Tool) –
outputs (Dict[str, Any]) –
request_id (str) –
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- outputs: Dict[str, Any]#
The return value generated by the tool’s execution, one per property defined in tool’s outputs
- request_id: str#
Identifier of the tool execution request
- class pyagentspec.tracing.events.tool.ToolConfirmationRequest(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, tool, request_id, tool_execution_request_id=None)#
Bases:
EventA tool confirmation request is raised.
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
tool (Tool) –
request_id (str) –
tool_execution_request_id (str | None) –
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- request_id: str#
Identifier of the confirmation request
- tool_execution_request_id: str | None#
Identifier of the tool execution request this confirmation relates to
- class pyagentspec.tracing.events.tool.ToolConfirmationResponse(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, tool, execution_confirmed, request_id, tool_execution_request_id=None)#
Bases:
EventA tool confirmation response is received.
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
tool (Tool) –
execution_confirmed (bool) –
request_id (str) –
tool_execution_request_id (str | None) –
- execution_confirmed: bool#
Whether the execution of the tool was confirmed
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- request_id: str#
Identifier of the confirmation request
- tool_execution_request_id: str | None#
Identifier of the tool execution request this confirmation relates to
LLM Events#
- class pyagentspec.tracing.events.llmgeneration.ToolCall(*, call_id, tool_name, arguments)#
Bases:
BaseModelModel for an LLM tool call.
- Parameters:
call_id (str) –
tool_name (str) –
arguments (str) –
- arguments: str#
The values of the arguments that should be passed to the tool, in JSON format
- call_id: str#
Identifier of the tool call
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- tool_name: str#
The name of the tool that should be called
- class pyagentspec.tracing.messages.message.Message(*, id=None, content, sender=None, role)#
Bases:
BaseModelModel used to specify LLM message details in events and spans
- Parameters:
id (str | None) –
content (str) –
sender (str | None) –
role (str) –
- content: str#
Content of the message
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- role: str#
Role of the sender of the message. Typically ‘user’, ‘assistant’, or ‘system’
- sender: str | None#
Sender of the message
- class pyagentspec.tracing.events.llmgeneration.LlmGenerationRequest(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, llm_config, prompt, tools, request_id, llm_generation_config=None)#
Bases:
EventAn LLM generation request was received. Start of the LlmGenerationSpan.
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
llm_config (LlmConfig) –
prompt (List[Message]) –
tools (List[Tool]) –
request_id (str) –
llm_generation_config (LlmGenerationConfig | None) –
- llm_generation_config: LlmGenerationConfig | None#
The LLM configuration used for this LLM call
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- request_id: str#
Identifier of the generation request
- class pyagentspec.tracing.events.llmgeneration.LlmGenerationChunkReceived(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, llm_config, content, request_id, tool_calls=[], completion_id=None, output_tokens=None)#
Bases:
Event- Parameters:
- completion_id: str | None#
The identifier of the completion related to this response chunk
- content: str | None#
The content of the chunk received from the LLM
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- output_tokens: int | None#
Number of output tokens for this chunk
- request_id: str#
Identifier of the generation request
- class pyagentspec.tracing.events.llmgeneration.LlmGenerationResponse(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, llm_config, content, tool_calls=[], request_id, completion_id=None, input_tokens=None, output_tokens=None)#
Bases:
EventAn LLM response was received. End of an LlmGenerationSpan.
- Parameters:
- completion_id: str | None#
The identifier of the completion related to this response
- content: str | None#
The content of the response received from the LLM
- input_tokens: int | None#
Number of input tokens
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- output_tokens: int | None#
Number of output tokens
- request_id: str#
Identifier of the generation request
Multi-agent Events#
- class pyagentspec.tracing.events.managerworkers.ManagerWorkersExecutionStart(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, managerworkers, inputs)#
Bases:
EventThe execution of a manager-workers is starting. Emitted when a ManagerWorkersExecutionSpan starts
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
managerworkers (ManagerWorkers) –
inputs (Dict[str, Any]) –
- inputs: Dict[str, Any]#
The inputs used for the manager-workers’s execution, one per property defined in manager-workers’s inputs
- managerworkers: ManagerWorkers#
The ManagerWorkers being executed
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class pyagentspec.tracing.events.managerworkers.ManagerWorkersExecutionEnd(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, managerworkers, outputs)#
Bases:
EventThe execution of a manager-workers is ending. Emitted when a ManagerWorkersExecutionSpan ends.
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
managerworkers (ManagerWorkers) –
outputs (Dict[str, Any]) –
- managerworkers: ManagerWorkers#
The ManagerWorkers being executed
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- outputs: Dict[str, Any]#
The outputs generated by the manager-workers’s execution, one per property defined in manager-workers’s outputs
- class pyagentspec.tracing.events.swarm.SwarmExecutionStart(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, swarm, inputs)#
Bases:
EventThe execution of a swarm is starting. Emitted when a SwarmExecutionSpan starts
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
swarm (Swarm) –
inputs (Dict[str, Any]) –
- inputs: Dict[str, Any]#
The inputs used for the swarm’s execution, one per property defined in swarm’s inputs
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class pyagentspec.tracing.events.swarm.SwarmExecutionEnd(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, swarm, outputs)#
Bases:
EventThe execution of a swarm is ending. Emitted when a SwarmExecutionSpan ends.
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
swarm (Swarm) –
outputs (Dict[str, Any]) –
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- outputs: Dict[str, Any]#
The outputs generated by the swarm’s execution, one per property defined in swarm’s outputs
Other Events#
- class pyagentspec.tracing.events.exception.ExceptionRaised(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, exception_type, exception_message, exception_stacktrace='')#
Bases:
EventThis event is recorded whenever an exception occurs.
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
exception_type (str) –
exception_message (str) –
exception_stacktrace (str) –
- exception_message: str#
Message of the exception
- exception_stacktrace: str#
Stacktrace of the exception
- exception_type: str#
Type of the exception
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class pyagentspec.tracing.events.humanintheloop.HumanInTheLoopRequest(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, request_id, content)#
Bases:
EventA human-in-the-loop (HITL) intervention is required. Emitted when the execution is interrupted due to HITL request
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
request_id (str) –
content (Dict[str, Any]) –
- content: Dict[str, Any]#
The content of the request forwarded to the user
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- request_id: str#
Identifier of the human-in-the-loop request
- class pyagentspec.tracing.events.humanintheloop.HumanInTheLoopResponse(*, id=<factory>, name=None, description='', timestamp=<factory>, metadata=<factory>, request_id, content)#
Bases:
EventA human-in-the-loop response is provided. Emitted when the execution restarts after HITL response.
- Parameters:
id (str) –
name (str | None) –
description (str) –
timestamp (int) –
metadata (dict[str, Any]) –
request_id (str) –
content (Dict[str, Any]) –
- content: Dict[str, Any]#
The content of the response received from the user
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- request_id: str#
Identifier of the human-in-the-loop request