select_ai.agent adds a thin Python layer over Oracle Autonomous Database’s
DBMS_CLOUD_AI_AGENT package so you can define tools, compose tasks, wire up
agents and run teams from Python using the existing select_ai connection objects
Keep agent state and orchestration in the database
Register callable tools (PL/SQL procedure or functions, SQL, external HTTP endpoints, Slack or Email notifications) and attach them to tasks
Group agents into teams and invoke them with a single API call
1. Tool¶
A callable which Select AI agent can invoke to accomplish a certain task. Users can either register built-in tools or create a custom tool using a PL/SQL stored procedure.
1.1. Supported Tools¶
Following class methods of select_ai.agent.Tool class
can be used to create tools. Invoking them will create a proxy object in the
Python layer and persist the tool in the Database using
DBMS_CLOUD_AI_AGENT.CREATE_TOOL
Tool Type |
Class Method |
Arguments |
|---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- class select_ai.agent.ToolAttributes(instruction: str | None = None, function: str | None = None, tool_params: ToolParams | None = None, tool_inputs: List[Mapping] | None = None, tool_type: ToolType | None = None)¶
AI Tool attributes
- Parameters:
instruction (str) – Statement that describes what the tool should accomplish and how to do it. This text is included in the prompt sent to the LLM.
function – Specifies the PL/SQL procedure or function to call when the tool is used
tool_params (select_ai.agent.ToolParams) – Tool parameters for built-in tools
tool_inputs (List[Mapping]) –
Describes input arguments. Similar to column comments in a table. For example: “tool_inputs”: [
- {
“name”: “data_guard”, “description”: “Only supported values are “Enabled” and “Disabled””
}
]
- class select_ai.agent.ToolParams(_REQUIRED_FIELDS: List | None = None, credential_name: str | None = None, endpoint: str | None = None, notification_type: NotificationType | None = None, profile_name: str | None = None, recipient: str | None = None, sender: str | None = None, slack_channel: str | None = None, smtp_host: str | None = None)¶
Parameters to register a built-in Tool
- Parameters:
credential_name (str) – Used by SLACK, EMAIL and WEBSEARCH tools
endpoint (str) – Send HTTP requests to this endpoint
select_ai.agent.NotificationType – Either SLACK or EMAIL
profile_name (str) – Name of AI profile to use
recipient (str) – Recipient used for EMAIL notification
sender (str) – Sender used for EMAIL notification
slack_channel (str) – Slack channel to use
smtp_host (str) – SMTP host to use for EMAIL notification
- class select_ai.agent.Tool(tool_name: str | None = None, description: str | None = None, attributes: ToolAttributes | None = None)¶
- classmethod create_built_in_tool(tool_name: str, tool_params: ToolParams, tool_type: ToolType, description: str | None = None, replace: bool | None = False) Tool¶
Register a built-in tool
- Parameters:
tool_name (str) – The name of the tool
tool_params (select_ai.agent.ToolParams) – Parameters required by built-in tool
tool_type (select_ai.agent.ToolType) – The built-in tool type
description (str) – Description of the tool
replace (bool) – Whether to replace the existing tool. Default value is False
- Returns:
select_ai.agent.Tool
- classmethod create_email_notification_tool(tool_name: str, credential_name: str, recipient: str, sender: str, smtp_host: str, description: str | None, replace: bool = False) Tool¶
Register an email notification tool
- Parameters:
tool_name (str) – The name of the tool
credential_name (str) – The name of the credential
recipient (str) – The recipient of the email
sender (str) – The sender of the email
smtp_host (str) – The SMTP host of the email server
description (str) – The description of the tool
replace (bool) – Whether to replace the existing tool. Default value is False
- Returns:
select_ai.agent.Tool
- classmethod create_pl_sql_tool(tool_name: str, function: str, description: str | None = None, replace: bool = False) Tool¶
Create a custom tool to invoke PL/SQL procedure or function
- Parameters:
tool_name (str) – The name of the tool
function (str) – The name of the PL/SQL procedure or function
description (str) – The description of the tool
replace (bool) – Whether to replace existing tool. Default value is False
- classmethod create_rag_tool(tool_name: str, profile_name: str, description: str | None = None, replace: bool = False) Tool¶
Register a RAG tool, which will use a VectorIndex linked AI Profile
- Parameters:
tool_name (str) – The name of the tool
profile_name (str) – The name of the profile to use for Vector Index based RAG
description (str) – The description of the tool
replace (bool) – Whether to replace existing tool. Default value is False
- classmethod create_slack_notification_tool(tool_name: str, credential_name: str, slack_channel: str, description: str | None = None, replace: bool = False) Tool¶
Register a Slack notification tool
- Parameters:
tool_name (str) – The name of the Slack notification tool
credential_name (str) – The name of the Slack credential
slack_channel (str) – The name of the Slack channel
description (str) – The description of the Slack notification tool
replace (bool) – Whether to replace existing tool. Default value is False
- classmethod create_sql_tool(tool_name: str, profile_name: str, description: str | None = None, replace: bool = False) Tool¶
Register a SQL tool to perform natural language to SQL translation
- Parameters:
tool_name (str) – The name of the tool
profile_name (str) – The name of the profile to use for SQL translation
description (str) – The description of the tool
replace (bool) – Whether to replace existing tool. Default value is False
- classmethod create_websearch_tool(tool_name: str, credential_name: str, description: str | None, replace: bool = False) Tool¶
Register a built-in websearch tool to search information on the web
- Parameters:
tool_name (str) – The name of the tool
credential_name (str) – The name of the credential object storing OpenAI credentials
description (str) – The description of the tool
replace (bool) – Whether to replace the existing tool
- delete(force: bool = False)¶
Delete AI Tool from the database
- Parameters:
force (bool) – Force the deletion. Default value is False.
- disable()¶
Disable AI Tool
- enable()¶
Enable AI Tool
- classmethod fetch(tool_name: str) Tool¶
Fetch AI Tool attributes from the Database and build a proxy object in the Python layer
- Parameters:
tool_name (str) – The name of the AI Task
- Returns:
select_ai.agent.Tool
- Raises:
select_ai.errors.AgentToolNotFoundError – If the AI Tool is not found
- classmethod list(tool_name_pattern: str = '.*') Iterator[Tool]¶
List AI Tools
- Parameters:
tool_name_pattern (str) – Regular expressions can be used to specify a pattern. Function REGEXP_LIKE is used to perform the match. Default value is “.*” i.e. match all tool name.
- Returns:
Iterator[Tool]
- set_attribute(attribute_name: str, attribute_value: Any) None¶
Set the attribute of the AI Agent tool specified by attribute_name and attribute_value.
- set_attributes(attributes: ToolAttributes) None¶
Set the attributes of the AI Agent tool
1.2. Create Tool¶
The following example shows creation of an AI agent tool to perform natural language translation to SQL using an OCI AI profile
import os
from pprint import pformat
import select_ai
import select_ai.agent
user = os.getenv("SELECT_AI_USER")
password = os.getenv("SELECT_AI_PASSWORD")
dsn = os.getenv("SELECT_AI_DB_CONNECT_STRING")
select_ai.connect(user=user, password=password, dsn=dsn)
profile_attributes = select_ai.ProfileAttributes(
credential_name="my_oci_ai_profile_key",
object_list=[
{"owner": user, "name": "MOVIE"},
{"owner": user, "name": "ACTOR"},
{"owner": user, "name": "DIRECTOR"},
],
provider=select_ai.OCIGenAIProvider(
region="us-chicago-1",
oci_apiformat="GENERIC",
model="meta.llama-4-maverick-17b-128e-instruct-fp8",
),
)
profile = select_ai.Profile(
profile_name="LLAMA_4_MAVERICK",
attributes=profile_attributes,
description="MY OCI AI Profile",
replace=True,
)
# Use the OCI AI Profile to perform natural
# language SQL translation
sql_tool = select_ai.agent.Tool.create_sql_tool(
tool_name="MOVIE_SQL_TOOL",
description="My Select AI MOVIE SQL agent tool",
profile_name="LLAMA_4_MAVERICK",
replace=True,
)
print(sql_tool.tool_name)
print(pformat(sql_tool.attributes))
output:
MOVIE_SQL_TOOL
ToolAttributes(instruction=None,
function=None,
tool_params=SQLToolParams(_REQUIRED_FIELDS=None,
credential_name=None,
endpoint=None,
notification_type=None,
profile_name='oci_ai_profile',
recipient=None,
sender=None,
slack_channel=None,
smtp_host=None),
tool_inputs=None,
tool_type=<ToolType.SQL: 'SQL'>)
1.3. List Tools¶
import os
import select_ai
import select_ai.agent
user = os.getenv("SELECT_AI_USER")
password = os.getenv("SELECT_AI_PASSWORD")
dsn = os.getenv("SELECT_AI_DB_CONNECT_STRING")
select_ai.connect(user=user, password=password, dsn=dsn)
for tool in select_ai.agent.Tool.list():
print(tool)
output:
Tool(tool_name=MOVIE_SQL_TOOL, attributes=ToolAttributes(instruction='This tool is used to work with SQL queries using natural language. Input should be a natural language query about data or database operations. The tool behavior depends on the configured action: RUNSQL - generates and executes the SQL query returning actual data; SHOWSQL - generates and displays the SQL statement without executing it; EXPLAINSQL - generates SQL and provides a natural language explanation of what the query does. Always provide clear, specific questions about the data you want to retrieve or analyze.', function='dbms_cloud_ai_agent.sql_tool', tool_params=SQLToolParams(_REQUIRED_FIELDS=None, credential_name=None, endpoint=None, notification_type=None, profile_name='oci_ai_profile', recipient=None, sender=None, slack_channel=None, smtp_host=None), tool_inputs=None, tool_type='SQL'), description=My Select AI MOVIE SQL agent tool)
Tool(tool_name=LLM_CHAT_TOOL, attributes=ToolAttributes(instruction='This tool is used to work with SQL queries using natural language. Input should be a natural language query about data or database operations. The tool behavior depends on the configured action: RUNSQL - generates and executes the SQL query returning actual data; SHOWSQL - generates and displays the SQL statement without executing it; EXPLAINSQL - generates SQL and provides a natural language explanation of what the query does. Always provide clear, specific questions about the data you want to retrieve or analyze.', function='dbms_cloud_ai_agent.sql_tool', tool_params=SQLToolParams(_REQUIRED_FIELDS=None, credential_name=None, endpoint=None, notification_type=None, profile_name='oci_ai_profile', recipient=None, sender=None, slack_channel=None, smtp_host=None), tool_inputs=None, tool_type='SQL'), description=My Select AI agent tool)
2. Task¶
Each task is identified by a task_name and includes a set of attributes that
guide the agent’s behavior during execution.
Key attributes include the instruction, which describes the task’s purpose and
provides context for the agent to reason about when and how to use it,
and the tools list, which specifies which tools the agent can choose from to
accomplish the task. An optional input field allows a task to depend on the
output of prior tasks, enabling task chaining and multi-step workflows.
- class select_ai.agent.TaskAttributes(instruction: str, tools: List[str] | None = None, input: str | None = None, enable_human_tool: bool | None = True)¶
AI Task attributes
- Parameters:
instruction (str) – Statement describing what the task is meant to accomplish
tools (List[str]) – List of tools the agent can use to execute the task
input (str) – Task name whose output will be automatically provided by select ai to LLM
enable_human_tool (bool) – Enable agent to ask question to user when it requires information or clarification during a task. Default value is True.
- class select_ai.agent.Task(task_name: str | None = None, description: str | None = None, attributes: TaskAttributes | None = None)¶
select_ai.agent.Task class lets you create, delete, enable, disable and list AI Tasks
- Parameters:
task_name (str) – The name of the AI task
description (str) – Optional description of the AI task
attributes (select_ai.agent.TaskAttributes) – AI task attributes
- create(enabled: bool | None = True, replace: bool | None = False)¶
Create a task that a Select AI agent can include in its reasoning process
- Parameters:
enabled (bool) – Whether the AI Task should be enabled. Default value is True.
replace (bool) – Whether the AI Task should be replaced. Default value is False.
- delete(force: bool = False)¶
Delete AI Task from the database
- Parameters:
force (bool) – Force the deletion. Default value is False.
- disable()¶
Disable AI Task
- enable()¶
Enable AI Task
- classmethod fetch(task_name: str) Task¶
Fetch AI Task attributes from the Database and build a proxy object in the Python layer
- Parameters:
task_name (str) – The name of the AI Task
- Returns:
select_ai.agent.Task
- Raises:
select_ai.errors.AgentTaskNotFoundError – If the AI Task is not found
- classmethod list(task_name_pattern: str | None = '.*') Iterator[Task]¶
List AI Tasks
- Parameters:
task_name_pattern (str) – Regular expressions can be used to specify a pattern. Function REGEXP_LIKE is used to perform the match. Default value is “.*” i.e. match all tasks.
- Returns:
Iterator[Task]
- set_attribute(attribute_name: str, attribute_value: Any)¶
Set a single AI Task attribute specified using name and value
- Parameters:
attribute_name (str) – The name of the AI Task attribute
attribute_value (str) – The value of the AI Task attribute
- set_attributes(attributes: TaskAttributes)¶
Set AI Task attributes
- Parameters:
attributes (select_ai.agent.TaskAttributes) – Multiple attributes can be specified by passing a TaskAttributes object
2.1. Create Task¶
In the following task, we use the MOVIE_SQL_TOOL created in the
previous step
import os
from pprint import pformat
import select_ai
import select_ai.agent
from select_ai.agent import Task, TaskAttributes
user = os.getenv("SELECT_AI_USER")
password = os.getenv("SELECT_AI_PASSWORD")
dsn = os.getenv("SELECT_AI_DB_CONNECT_STRING")
select_ai.connect(user=user, password=password, dsn=dsn)
task = Task(
task_name="ANALYZE_MOVIE_TASK",
description="Movie task involving a human",
attributes=TaskAttributes(
instruction="Help the user with their request about movies. "
"User question: {query}. "
"You can use SQL tool to search the data from database",
tools=["MOVIE_SQL_TOOL"],
enable_human_tool=False,
),
)
task.create(replace=True)
print(task.task_name)
print(pformat(task.attributes))
output:
ANALYZE_MOVIE_TASK
TaskAttributes(instruction='Help the user with their request about movies. '
'User question: {query}. You can use SQL tool to '
'search the data from database',
tools=['MOVIE_SQL_TOOL'],
input=None,
enable_human_tool=False)
2.2. List Tasks¶
import os
import select_ai
import select_ai.agent
user = os.getenv("SELECT_AI_USER")
password = os.getenv("SELECT_AI_PASSWORD")
dsn = os.getenv("SELECT_AI_DB_CONNECT_STRING")
select_ai.connect(user=user, password=password, dsn=dsn)
for task in select_ai.agent.Task.list():
print(task)
output:
Task(task_name=ANALYZE_MOVIE_TASK, attributes=TaskAttributes(instruction='Help the user with their request about movies. User question: {query}. You can use SQL tool to search the data from database', tools='["MOVIE_SQL_TOOL"]', input=None, enable_human_tool=False), description=Movie task involving a human)
3. Agent¶
A Select AI Agent is defined using agent_name, its attributes and an
optional description. The attributes must include key agent properties such as
profile_name which specifies the LLM profile used for prompt generation
and role, which outlines the agent’s intended role and behavioral context.
- class select_ai.agent.AgentAttributes(profile_name: str, role: str, enable_human_tool: bool | None = True)¶
AI Agent Attributes
- Parameters:
profile_name (str) – Name of the AI Profile which agent will use to send request to LLM
role (str) – Agent’s role also sent to LLM
enable_human_tool (bool) – Enable human tool support. Agent will ask question to the user for any clarification
- class select_ai.agent.Agent(agent_name: str | None = None, description: str | None = None, attributes: AgentAttributes | None = None)¶
select_ai.agent.Agent class lets you create, delete, enable, disable and list AI agents
- Parameters:
agent_name (str) – The name of the AI Agent
description (str) – Optional description of the AI agent
attributes (select_ai.agent.AgentAttributes) – AI agent attributes
- create(enabled: bool | None = True, replace: bool | None = False)¶
Register a new AI Agent within the Select AI framework
- Parameters:
enabled (bool) – Whether the AI Agent should be enabled. Default value is True.
replace (bool) – Whether the AI Agent should be replaced. Default value is False.
- delete(force: bool | None = False)¶
Delete AI Agent from the database
- Parameters:
force (bool) – Force the deletion. Default value is False.
- disable()¶
Disable AI Agent
- enable()¶
Enable AI Agent
- classmethod fetch(agent_name: str) Agent¶
Fetch AI Agent attributes from the Database and build a proxy object in the Python layer
- Parameters:
agent_name (str) – The name of the AI Agent
- Returns:
select_ai.agent.Agent
- Raises:
select_ai.errors.AgentNotFoundError – If the AI Agent is not found
- classmethod list(agent_name_pattern: str | None = '.*') Iterator[Agent]¶
List AI agents matching a pattern
- Parameters:
agent_name_pattern (str) – Regular expressions can be used to specify a pattern. Function REGEXP_LIKE is used to perform the match. Default value is “.*” i.e. match all agent names.
- Returns:
Iterator[Agent]
- set_attribute(attribute_name: str, attribute_value: Any) None¶
Set a single AI Agent attribute specified using name and value
- set_attributes(attributes: AgentAttributes) None¶
Set AI Agent attributes
- Parameters:
attributes (select_ai.agent.AgentAttributes) – Multiple attributes can be specified by passing an AgentAttributes object
3.1. Create Agent¶
import os
import select_ai
from select_ai.agent import (
Agent,
AgentAttributes,
)
user = os.getenv("SELECT_AI_USER")
password = os.getenv("SELECT_AI_PASSWORD")
dsn = os.getenv("SELECT_AI_DB_CONNECT_STRING")
select_ai.connect(user=user, password=password, dsn=dsn)
agent_attributes = AgentAttributes(
profile_name="LLAMA_4_MAVERICK",
role="You are an AI Movie Analyst. "
"Your can help answer a variety of questions related to movies. ",
enable_human_tool=False,
)
agent = Agent(
agent_name="MOVIE_ANALYST",
attributes=agent_attributes,
)
agent.create(enabled=True, replace=True)
print("Created Agent:", agent)
output:
Created Agent: Agent(agent_name=MOVIE_ANALYST, attributes=AgentAttributes(profile_name='LLAMA_4_MAVERICK', role='You are an AI Movie Analyst. Your can help answer a variety of questions related to movies. ', enable_human_tool=False), description=None)
4. Team¶
AI Agent Team coordinates the execution of multiple agents working together to
fulfill a user request. Each team is uniquely identified by a team_name and
configured through a set of attributes that define its composition and
execution strategy. The agents attribute specifies an array of agent-task
pairings, allowing users to assign specific tasks to designated agents. User
can perform multiple tasks by assigning the same agent to different tasks.
The process attribute defines how tasks should be executed.
- class select_ai.agent.TeamAttributes(agents: List[Mapping], process: str = 'sequential')¶
AI agent team attributes
- Parameters:
agents (List[Mapping]) – A List of Python dictionaries, each defining the agent and the task name. [{“name”: “<agent_name>”, “task”: “<task_name>”}]
process (str) – Execution order of tasks. Currently only “sequential” is supported.
- class select_ai.agent.Team(team_name: str, attributes: TeamAttributes, description: str | None = None)¶
A Team of AI agents work together to accomplish tasks select_ai.agent.Team class lets you create, delete, enable, disable and list AI Tasks.
- Parameters:
team_name (str) – The name of the AI team
description (str) – Optional description of the AI team
attributes (select_ai.agent.TeamAttributes) – AI team attributes
- create(enabled: bool | None = True, replace: bool | None = False)¶
Create a team of AI agents that work together to accomplish tasks.
- Parameters:
enabled (bool) – Whether the AI agent team should be enabled. Default value is True.
replace (bool) – Whether the AI agent team should be replaced. Default value is False.
- delete(force: bool | None = False)¶
Delete an AI agent team from the database
- Parameters:
force (bool) – Force the deletion. Default value is False.
- disable()¶
Disable the AI agent team
- enable()¶
Enable the AI agent team
- classmethod fetch(team_name: str) Team¶
Fetch AI Team attributes from the Database and build a proxy object in the Python layer
- Parameters:
team_name (str) – The name of the AI Team
- Returns:
select_ai.agent.Team
- Raises:
select_ai.errors.AgentTeamNotFoundError – If the AI Team is not found
- classmethod list(team_name_pattern: str | None = '.*') Iterator[Team]¶
List AI Agent Teams
- Parameters:
team_name_pattern (str) – Regular expressions can be used to specify a pattern. Function REGEXP_LIKE is used to perform the match. Default value is “.*” i.e. match all teams.
- Returns:
Iterator[Team]
- run(prompt: str = None, params: Mapping = None)¶
Start a new AI agent team or resume a paused one that is waiting for human input. If you provide an existing process ID and the associated team process is in the WAITING_FOR_HUMAN state, the function resumes the workflow using the input you provide as the human response
- Parameters:
prompt (str) – Optional prompt for the user. If the task is in the RUNNING state, the input acts as a placeholder for the {query} in the task instruction. If the task is in the WAITING_FOR_HUMAN state, the input serves as the human response.
params (Mapping[str, str]) –
Optional parameters for the task. Currently, the following parameters are supported:
conversation_id: Identifies the conversation session associated
with the agent team
variables: key-value pairs that provide additional input to the agent team.
- set_attribute(attribute_name: str, attribute_value: Any) None¶
Set the attribute of the AI Agent team specified by attribute_name and attribute_value.
- set_attributes(attributes: TeamAttributes) None¶
Set the attributes of the AI Agent team
4.1. Run Team¶
import os
import uuid
import select_ai
from select_ai.agent import (
Team,
TeamAttributes,
)
conversation_id = str(uuid.uuid4())
user = os.getenv("SELECT_AI_USER")
password = os.getenv("SELECT_AI_PASSWORD")
dsn = os.getenv("SELECT_AI_DB_CONNECT_STRING")
select_ai.connect(user=user, password=password, dsn=dsn)
# Team
team = Team(
team_name="MOVIE_AGENT_TEAM",
attributes=TeamAttributes(
agents=[{"name": "MOVIE_ANALYST", "task": "ANALYZE_MOVIE_TASK"}],
process="sequential",
),
)
team.create(enabled=True, replace=True)
print(
team.run(
prompt="Could you list the movies in the database?",
params={"conversation_id": conversation_id},
)
)
output:
The database contains 100 movies with various titles, genres, and release dates. The list includes a wide range of genres such as Action, Comedy, Drama, Thriller, Romance, Adventure, Mystery, Sci-Fi, Historical, Biography, War, Sports, Music, Documentary, Animated, Fantasy, Horror, Western, Family, and more. The release dates are primarily in January and February of 2019. Here is a summary of the movies:
1. Action Movie (Action, 2019-01-01)
2. Comedy Film (Comedy, 2019-01-02)
3. Drama Series (Drama, 2019-01-03)
4. Thriller Night (Thriller, 2019-01-04)
5. Romance Story (Romance, 2019-01-05)
6. Adventure Time (Adventure, 2019-01-06)
7. Mystery Solver (Mystery, 2019-01-07)
8. Sci-Fi World (Sci-Fi, 2019-01-08)
9. Historical Epic (Historical, 2019-01-09)
10. Biographical (Biography, 2019-01-10)
... (list continues up to 100 movies)
5. AI agent examples¶
5.1. Web Search Agent using OpenAI’s GPT model¶
# -----------------------------------------------------------------------------
# Copyright (c) 2025, Oracle and/or its affiliates.
#
# Licensed under the Universal Permissive License v 1.0 as shown at
# http://oss.oracle.com/licenses/upl.
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# movie_analyst.py
#
# Demonstrates web search AI agent
# -----------------------------------------------------------------------------
import os
import select_ai
from select_ai.agent import (
Agent,
AgentAttributes,
Task,
TaskAttributes,
Team,
TeamAttributes,
Tool,
)
OPEN_AI_CREDENTIAL_NAME = "OPENAI_CRED"
OPEN_AI_PROFILE_NAME = "OPENAI_PROFILE"
SELECT_AI_AGENT_NAME = "WEB_SEARCH_AGENT"
SELECT_AI_TASK_NAME = "WEB_SEARCH_TASK"
SELECT_AI_TOOL_NAME = "WEB_SEARCH_TOOL"
SELECT_AI_TEAM_NAME = "WEB_SEARCH_TEAM"
USER_QUERIES = {
"d917b055-e8a1-463a-a489-d4328a7b2210": "What are the key features for the product highlighted at "
"this URL https://www.oracle.com/artificial-intelligence/database-machine-learning",
"c2e3ff20-f56d-40e7-987c-cc72740c75a5": "What is the main topic at this URL https://www.oracle.com/artificial-intelligence/database-machine-learning",
"25e23a25-07b9-4ed7-be11-f7e5e445d286": "What is the main topic at this URL https://openai.com",
}
# connect
user = os.getenv("SELECT_AI_USER")
password = os.getenv("SELECT_AI_PASSWORD")
dsn = os.getenv("SELECT_AI_DB_CONNECT_STRING")
select_ai.connect(user=user, password=password, dsn=dsn)
# Create Open AI credential
select_ai.create_credential(
credential={
"credential_name": OPEN_AI_CREDENTIAL_NAME,
"username": "OPENAI",
"password": os.getenv("OPEN_AI_API_KEY"),
},
replace=True,
)
print("Created credential: ", OPEN_AI_CREDENTIAL_NAME)
# # Create Open AI Profile
profile = select_ai.Profile(
profile_name=OPEN_AI_PROFILE_NAME,
attributes=select_ai.ProfileAttributes(
credential_name=OPEN_AI_CREDENTIAL_NAME,
provider=select_ai.OpenAIProvider(model="gpt-4.1"),
),
description="My Open AI Profile",
replace=True,
)
print("Created profile: ", OPEN_AI_PROFILE_NAME)
# Create an AI Agent team
team = Team(
team_name=SELECT_AI_TEAM_NAME,
attributes=TeamAttributes(
agents=[{"name": SELECT_AI_AGENT_NAME, "task": SELECT_AI_TASK_NAME}]
),
)
team.create(replace=True)
# Agent
agent = Agent(
agent_name=SELECT_AI_AGENT_NAME,
attributes=AgentAttributes(
profile_name=OPEN_AI_PROFILE_NAME,
enable_human_tool=False,
role="You are a specialized web search agent that can access web page "
"contents and respond to questions based on its content.",
),
)
agent.create(replace=True)
# Task
task = Task(
task_name=SELECT_AI_TASK_NAME,
attributes=TaskAttributes(
instruction="Answer the user question about the provided URL:{query}",
enable_human_tool=False,
tools=[SELECT_AI_TOOL_NAME],
),
)
task.create(replace=True)
# Tool
web_search_tool = Tool.create_websearch_tool(
tool_name=SELECT_AI_TOOL_NAME,
credential_name=OPEN_AI_CREDENTIAL_NAME,
description="Web Search Tool using OpenAI",
replace=True,
)
print("Created tool: ", SELECT_AI_TOOL_NAME)
# Run the Agent Team
for conversation_id, prompt in USER_QUERIES.items():
response = team.run(
prompt=prompt, params={"conversation_id": conversation_id}
)
print(response)
output:
Created credential: OPENAI_CRED
Created profile: OPENAI_PROFILE
Created tool: WEB_SEARCH_TOOL
The key features of Oracle Database Machine Learning, as highlighted on the Oracle website, include:
- In-database machine learning: Build, train, and deploy machine learning models directly inside the Oracle Database, eliminating the need to move data.
- Support for multiple languages: Use SQL, Python, and R for machine learning tasks, allowing flexibility for data scientists and developers.
- Automated machine learning (AutoML): Automates feature selection, model selection, and hyperparameter tuning to speed up model development.
- Scalability and performance: Utilizes Oracle Database’s scalability, security, and high performance for machine learning workloads.
- Integration with Oracle Cloud: Seamlessly integrates with Oracle Cloud Infrastructure for scalable and secure deployment.
- Security and governance: Inherits Oracle Database’s robust security, data privacy, and governance features.
- Prebuilt algorithms: Offers a wide range of in-database algorithms for classification, regression, clustering, anomaly detection, and more.
- No data movement: Keeps data secure and compliant by performing analytics and machine learning where the data resides.
These features enable organizations to operationalize machine learning at scale, improve productivity, and maintain data security and compliance.
The main topic at the URL https://www.oracle.com/artificial-intelligence/database-machine-learning is Oracle's database machine learning capabilities, specifically how Oracle integrates artificial intelligence and machine learning features directly into its database products. The page highlights how users can leverage these built-in AI and ML tools to analyze data, build predictive models, and enhance business applications without moving data outside the Oracle Database environment.
The main topic of the website https://openai.com is artificial intelligence research and development. OpenAI focuses on creating and promoting advanced AI technologies, including products like ChatGPT, and provides information about their research, products, and mission to ensure that artificial general intelligence benefits all of humanity.